Nos tutelles

CNRS

Nom tutelle 1

Nos partenaires

Nom tutelle 2 Nom tutelle 3

Rechercher



Nom tutelle 2 Nom tutelle 3


Accueil > Recherche > Soutenances de Thèses et d’HDRs

Larisa Troitsyna soutient sa thèse le 26 novembre 2021

par Edith Burgey -

Soutenance prévue le vendredi 26 novembre 2021 à 10h30 - 16 route de Gray, 25030 Besançon cedex - Salle : 326C


Titre des travaux  :
"Approche semi-classique aux paramètres collisionnels de raies spectrales de CH3I pour applications atmosphériques et planétologiques"

"Semi-classical approach to collisional parameters of CH3I spectral lines for atmospheric and planetological applications"

Membres du jury  :

  • Mme Jeanna BULDYREVA-BALLENEGGER - Directrice de thèse
  • M. David JACQUEMART - Examinateur
  • M. Daniel LISAK - Rapporteur
  • M. Mikhail TRETYAKOV - Rapporteur
  • Mme Nina LAVRENTIEVA - Examinatrice

Résumé de la thèse (en français) :
La molécule d’iodure de méthyle CH3I est devenue récemment l’objet d’études spectroscopiques intenses en raison de son rôle dans la diminution de la couche d’ozone et de son danger pour la santé humaine au cas d’une émission accidentelle dans l’atmosphère. La bande fondamentale nu6 apparaît particulièrement adaptée à la détection atmosphérique de CH3I, car elle tombe dans la fenêtre de transparence à 11mu m. Cependant, les paramètres spectroscopiques actuellement disponibles pour CH3I perturbé par les principales espèces atmosphériques sont limités à quelques mesures extrêmement rares à température ambiante et manquent dans les bases de données spectroscopiques. Pour compléter/remplacer les données expérimentales manquantes, dans le cadre du Projet de Recherche International franco-russe SAMIA, les coefficients d’élargissement de raies pour les paires atmosphériques clés CH3I-CH3I, CH3I-N2, CH3I-O2, CH3I-air sont calculés de manière semi-classique, avec l’utilisation du formalisme de Robert-Bonamy amélioré par des trajectoires exactes, dans de larges gammes de nombres quantiques rotationnels typiquement demandés par les bases de données (0 < J < 70, K < 20) et pour les six sous-branches RP, PP, RQ PQ, RR, PR de la bande nu6 ; leur dépendance vibrationnelle ainsi que les dépendances de sous-branche et en température (avec la loi exponentielle traditionnelle et la nouvelle loi "double-power" ) sont également abordées. Des arguments sont donnés pour justifier ce choix de la méthode facilement praticable face à ses modifications avancées mais moins en accord avec les mesures. Des comparaisons sont faites avec les mesures disponibles et des résultats semi-empiriques alternatifs, indiquant l’importance du modèle de potentiel d’interaction, en particulier de sa partie isotrope pilotant les trajectoires, pour une description réaliste des largeurs de raies collisionnelles.

Abstract (in English) :
Methyl iodide molecule CH3I has come recently into focus of intense spectroscopic studies due to its role in the ozone layer depletion and its danger for human health in case of an accidental release in the atmosphere. For its atmospheric detection particularly suitable is the nu6 fundamental, which falls into the transparency window at 11 mu m. However, currently available spectroscopic line-shape parameters for CH3I perturbed by main atmospheric species are limited to some extremely scarce measurements at ambient temperature and are missing in spectroscopic databases. To supplement/replace the missing experimental data, in the frame of the French-Russian International Research Project SAMIA, room-temperature (296 K) line-broadening coefficients for the key atmospheric pairs CH3I-CH3I, CH3I-N2, CH3I-O2,CH3I-air are calculated semi-classically, with the use of the Robert-Bonamy formalism improved by exact trajectories, in wide ranges of rotational quantum numbers typically requested by databases (0 < J < 70, K < 20) and for all six sub-branches RP, PP, RQ PQ, RR, PR of the nu6 band ; their vibrational dependence as well as sub-branch dependence and temperature dependence (with the traditional power and recently suggested double-power laws) are also addressed. Arguments are given to support this choice of the easily practicable method contrary to its advanced but less agreeing with measurements modifications. Comparisons are made with available measurements and alternative semi-empirical results, indicating the importance of the interaction potential model, in particular of its isotropic part governing the trajectories, for a realistic description of collisional line-widths.